[抄题]:
Given a non-empty integer array of size n, find the minimum number of moves required to make all array elements equal, where a move is incrementing n - 1 elements by 1.
Example:
Input:[1,2,3]Output:3Explanation:Only three moves are needed (remember each move increments two elements):[1,2,3] => [2,3,3] => [3,4,3] => [4,4,4]
[暴力解法]:
时间分析:
空间分析:
[优化后]:
时间分析:
空间分析:
[奇葩输出条件]:
[奇葩corner case]:
[思维问题]:
[一句话思路]:
逆向思维:n - 1 个数+1是抬高标准,也可以降低标准 一个数-1
[输入量]:空: 正常情况:特大:特小:程序里处理到的特殊情况:异常情况(不合法不合理的输入):
[画图]:
[一刷]:
[二刷]:
[三刷]:
[四刷]:
[五刷]:
[五分钟肉眼debug的结果]:
[总结]:
逆向思维的关键:抬高标准的效果=降低标准
[复杂度]:Time complexity: O(n) Space complexity: O(1)
[英文数据结构或算法,为什么不用别的数据结构或算法]:
Adding 1
to n - 1
elements is the same as subtracting 1
from one element, w.r.t goal of making the elements in the array equal.
min
element.sum(array) - n * minimum n-1元素+1=一个元素-1
[关键模板化代码]:
[其他解法]:
[Follow Up]:
462. Minimum Moves to Equal Array Elements II 还是数学题
[LC给出的题目变变变]:
[代码风格] :
class Solution { public int minMoves(int[] nums) { //ini:sort Arrays.sort(nums); int res = 0, min = nums[0]; //find min for (int num : nums) { min = Math.min(min, num); } //add res for (int num : nums) { res += (num - min); } //return return res; }}